3.578 \(\int (a+b x^n+c x^{2 n})^{3/2} \, dx\)

Optimal. Leaf size=140 \[ \frac {a x \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {1}{n};-\frac {3}{2},-\frac {3}{2};1+\frac {1}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1}} \]

[Out]

a*x*AppellF1(1/n,-3/2,-3/2,1+1/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(a+b*x^n+c*x
^(2*n))^(1/2)/(1+2*c*x^n/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {1348, 429} \[ \frac {a x \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {1}{n};-\frac {3}{2},-\frac {3}{2};1+\frac {1}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^n + c*x^(2*n))^(3/2),x]

[Out]

(a*x*Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[n^(-1), -3/2, -3/2, 1 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]),
(-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt
[b^2 - 4*a*c])])

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1348

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n + c*x^(2*n))
^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[b^2 - 4*a*c, 2]))^F
racPart[p]), Int[(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]))^p, x], x] /
; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \left (a+b x^n+c x^{2 n}\right )^{3/2} \, dx &=\frac {\left (a \sqrt {a+b x^n+c x^{2 n}}\right ) \int \left (1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}\right )^{3/2} \left (1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )^{3/2} \, dx}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ &=\frac {a x \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {1}{n};-\frac {3}{2},-\frac {3}{2};1+\frac {1}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.52, size = 513, normalized size = 3.66 \[ \frac {x \left (2 (n+1) \left (4 a^2 c \left (8 n^2+6 n+1\right )-3 a n^2 \left (b^2-4 a c (2 n+1)\right ) \sqrt {\frac {-\sqrt {b^2-4 a c}+b+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^n}{\sqrt {b^2-4 a c}+b}} F_1\left (\frac {1}{n};\frac {1}{2},\frac {1}{2};1+\frac {1}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{\sqrt {b^2-4 a c}-b}\right )+a \left (3 b^2 n^2+2 b c \left (23 n^2+21 n+4\right ) x^n+4 c^2 \left (10 n^2+9 n+2\right ) x^{2 n}\right )+x^n \left (b+c x^n\right ) \left (3 b^2 n^2+2 b c \left (7 n^2+9 n+2\right ) x^n+4 c^2 \left (2 n^2+3 n+1\right ) x^{2 n}\right )\right )-3 b n^2 x^n \left (b^2 (n+2)-4 a c (3 n+2)\right ) \sqrt {\frac {-\sqrt {b^2-4 a c}+b+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^n}{\sqrt {b^2-4 a c}+b}} F_1\left (1+\frac {1}{n};\frac {1}{2},\frac {1}{2};2+\frac {1}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{\sqrt {b^2-4 a c}-b}\right )\right )}{8 c (n+1)^2 (2 n+1) (3 n+1) \sqrt {a+x^n \left (b+c x^n\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^n + c*x^(2*n))^(3/2),x]

[Out]

(x*(-3*b*n^2*(b^2*(2 + n) - 4*a*c*(2 + 3*n))*x^n*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]
)]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[1 + n^(-1), 1/2, 1/2, 2 + n^(-1),
(-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + 2*(1 + n)*(4*a^2*c*(1 + 6*n + 8*n^2)
 + x^n*(b + c*x^n)*(3*b^2*n^2 + 2*b*c*(2 + 9*n + 7*n^2)*x^n + 4*c^2*(1 + 3*n + 2*n^2)*x^(2*n)) + a*(3*b^2*n^2
+ 2*b*c*(4 + 21*n + 23*n^2)*x^n + 4*c^2*(2 + 9*n + 10*n^2)*x^(2*n)) - 3*a*n^2*(b^2 - 4*a*c*(1 + 2*n))*Sqrt[(b
- Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 -
 4*a*c])]*AppellF1[n^(-1), 1/2, 1/2, 1 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2
- 4*a*c])])))/(8*c*(1 + n)^2*(1 + 2*n)*(1 + 3*n)*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c x^{2 \, n} + b x^{n} + a\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="giac")

[Out]

integrate((c*x^(2*n) + b*x^n + a)^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 \[ \int \left (b \,x^{n}+c \,x^{2 n}+a \right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^n+c*x^(2*n)+a)^(3/2),x)

[Out]

int((b*x^n+c*x^(2*n)+a)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c x^{2 \, n} + b x^{n} + a\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^(2*n) + b*x^n + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (a+b\,x^n+c\,x^{2\,n}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^n + c*x^(2*n))^(3/2),x)

[Out]

int((a + b*x^n + c*x^(2*n))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b x^{n} + c x^{2 n}\right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x**n+c*x**(2*n))**(3/2),x)

[Out]

Integral((a + b*x**n + c*x**(2*n))**(3/2), x)

________________________________________________________________________________________